Psychrophilic, Psychrotrophic, and Psychrotolerant Microorganisms

Based on temperature-dependent definition, psychrophiles are described as cold-loving microorganisms and grow optimally at about 15 °C, maximum temperature for growth at about 20 °C and minimum 0 °C or lower. Psychrotrophic microorganisms have a maximum temperature for growth about 20 °C and widespread in natural environments. Psychrotolerant microorganisms can survive at low temperature and can grow at elevated temperatures. Psychrophilic microorganisms occur in cold environments like polar surface, ice-cap regions, glaciers, cold deserts, permafrost, and deep oceans. Cold-loving bacteria include the genera Colwellia, Achromobacterium, Alcaligenes, Alteromonas, Bacillus, and many more. Physiological basis of cold adaptation includes protein synthesizing mechanisms, alteration in cellular structures, and inactivation of enzymes. Psychrophilic microorganisms produce antifreeze proteins, cryoprotectants, cold-shock proteins, and cold-active enzymes. They have applications in food industry, waste processing, agriculture, medicines, and environmental bioremediation.
In India, glaciers from Indian Himalayan Ranges, cold lakes like Pangong, and high-altitude soils serve as cold environments for isolation of psychrophilic microorganisms. Cold-adapted hydrolytic enzymes have been reported from Staphylococcus lipolyticus (lipase), Actinomycetes, and Alcaligenes (amylase, xylanase, cellulase, protease). Over 20 novel species of psychrophilic microorganisms, new to Science, have been reported from India.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 128.39 Price includes VAT (France)
Softcover Book EUR 168.79 Price includes VAT (France)
Hardcover Book EUR 168.79 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
- Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179. https://doi.org/10.1007/s00792-005-0498-4ArticleCASPubMedGoogle Scholar
- Ajaz M, Zargar MY, Baba ZA, Dar ZM, Malik MA, Rasool K, Maqbool S, Khan IJ, Asif M (2018) Characterization of psychrophilic bacteria involved in solid waste decomposition under temperate conditions. Int J Curr Microbiol App Sci 7(9):3788–3794. https://doi.org/10.20546/ijcmas.2018.709.468ArticleCASGoogle Scholar
- Annapure US, Nair P (2022) Microbial extremozymes, novel sources and industrial applications. In: Chapter 14 - Psychrozymes: a novel and promising resource for industrial applications, pp 185–195. https://doi.org/10.1016/B978-0-12-822945-3.00018-XChapterGoogle Scholar
- Antony R, Krishnan KP, Laluraj CM, Thamban M, Dhakephalkar PK, Engineer AS, Shivaji S (2012) Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol Res 167(6):372–380 ArticleCASPubMedGoogle Scholar
- Antony R, Sanyal A, Kapse N, Dhakephalkar PK, Thamban M, Nair S (2016) Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 192:192–202 ArticleCASPubMedGoogle Scholar
- Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransformation 26:332–349. https://doi.org/10.1080/10242420802390457ArticleCASGoogle Scholar
- Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colourful tale. Annu Rev Microbiol 51:629–659. https://doi.org/10.1146/annurev.micro.51.1.629ArticleCASPubMedGoogle Scholar
- Arora PK (2013) Staphylococcus lipolyticus sp. nov., a new cold-adapted lipase producing marine species. Ann Microbiol 63:913–922. https://doi.org/10.1007/s13213-012-0544-2ArticleCASGoogle Scholar
- Awasthi S, Sharma A, Saxena P, Yadav J, Pandiyan K, Kumar M, Singh A, Chakdar H, Bhowmik A, Kashyap PL, Srivastava AK (2019) Molecular detection and in silico characterization of cold shock protein coding gene (cspA) from cold adaptive Pseudomonas koreensis. J Plant Biochem Biotechnol 28(4):405–413 ArticleCASGoogle Scholar
- Cavicchioli R (2016) On the concept of a psychrophile. ISME J 10:793–795. https://doi.org/10.1038/ismej.2015.160ArticlePubMedGoogle Scholar
- Chaikam V, Karlson DT (2010) Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep 43:1–8. https://doi.org/10.5483/BMBRep.2010.43.1.001ArticleCASPubMedGoogle Scholar
- Chattopadhyay MK, Jagannadham MV (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24:386–388. https://doi.org/10.1007/s003000100232ArticleGoogle Scholar
- Chattopadhyay MK, Reddy GS, Shivaji S (2014) Psychrophilic bacteria: biodiversity, molecular basis of cold adaptation and biotechnological implications. Curr Biotechnol 3(1):100–116. https://doi.org/10.2174/22115501113026660039ArticleCASGoogle Scholar
- Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan Mountain ranges of India. Int J Syst Evol Microbiol 56(12):2765–2770 ArticleCASPubMedGoogle Scholar
- Chaturvedi P, Reddy GSN, Shivaji S (2005) Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55(5):2113–2117 ArticleCASPubMedGoogle Scholar
- Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand, France) 50(5):631–642 CASGoogle Scholar
- Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438. https://doi.org/10.1128/AEM.68.12.6435-6438.2002ArticleCASPubMedPubMed CentralGoogle Scholar
- Christner BC (2010) Bioprospecting for microbial products that affect ice crystal formation and growth. Appl Microbiol Biotechnol 85:481–189. https://doi.org/10.1007/s00253-009-2291-2ArticleCASPubMedGoogle Scholar
- Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309. https://doi.org/10.1016/S1369-5274(02)00329-6ArticleCASPubMedGoogle Scholar
- Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30:322–328. https://doi.org/10.1006/cryo.1993.1031ArticleGoogle Scholar
- Farooq S, Nazir R, Uqab B (2016) Psychrophiles: their habitat and applications. J Himalayan Ecol Sustain Dev 11:27–36 Google Scholar
- Farooq S, Nazir R, Ganai BA, Mushtaq H, Dar GJ (2022) Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia 77:203–213. https://doi.org/10.1007/s11756-021-00915-6ArticleCASGoogle Scholar
- Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:512840. https://doi.org/10.1155/2013/512840ArticlePubMedPubMed CentralGoogle Scholar
- Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53(10):830–841. https://doi.org/10.1007/s000180050103ArticleCASPubMedGoogle Scholar
- Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208. https://doi.org/10.1038/nrmicro773ArticleCASPubMedGoogle Scholar
- Fong NJC, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756. https://doi.org/10.1007/s002530100739ArticleCASPubMedGoogle Scholar
- Furhan J (2020) Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: recent overview. J Genet Eng Biotechnol 18:36. https://doi.org/10.1186/s43141-020-00053-7ArticlePubMedPubMed CentralGoogle Scholar
- Gangwar P, Alam SI, Bansod S, Singh L (2009) Bacterial diversity of soil samples from the western Himalayas, India. Can J Microbiol 55(5). https://doi.org/10.1139/W09-011
- Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx J-C, Sonan G, Feller G, Gerday C (2004) Some like it cold: Biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42. https://doi.org/10.1016/j.femsre.2003.07.003ArticleCASPubMedGoogle Scholar
- Gerday C, Aittaleb M, Bentahier M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M-A, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107. https://doi.org/10.1016/S0167-7799(99)01413-4ArticleCASPubMedGoogle Scholar
- Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic Lake bacteria. Microbiology 150:171–180. https://doi.org/10.1099/mic0.26610-0ArticleCASPubMedGoogle Scholar
- Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42(11–12):1192–1197. https://doi.org/10.1007/BF01946390ArticleCASPubMedGoogle Scholar
- Hamdan A (2018) Psychrophiles: ecological significance and potential industrial application. S Afr J Sci 114(5–6). https://doi.org/10.17159/sajs.2018/20170254
- Hassan N, Anesio AM, Rafiq M, Holtvoeth J, Bull I, Haleem A, Shah AA, Hasan F (2020) Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria. Front Microbiol 11:824. https://doi.org/10.3389/fmicb.2020.00824ArticlePubMedPubMed CentralGoogle Scholar
- Hebraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1:211–219 CASPubMedGoogle Scholar
- Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Francois JM, Baise E, Feller G, Gerday C (2001) Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535. https://doi.org/10.1128/AEM.67.4.1529-1535.2001ArticleCASPubMedPubMed CentralGoogle Scholar
- https://serc.carleton.edu/microbelife/extreme/cold/index.html
- Inniss WE (1975) Interaction of temperature and psychrophilic microorganisms. Annu Rev Microbiol 29:445–466. https://doi.org/10.1146/annurev.mi.29.100175.002305ArticleCASPubMedGoogle Scholar
- Jadhav V, Jamle M, Pawar P, Devare M, Bhadekar R (2010) Fatty acid profiles of PUFA producing Antarctic bacteria: Correlation with RaPd analysis. Ann Microbiol 60:693–699. https://doi.org/10.1007/s13213-010-0114-4ArticleCASGoogle Scholar
- Jadhav VV, Pote SS, Yadav A, Shouche YS, Bhadekar RK (2013) Extracellular cold active lipase from the psychrotrophic Halomonas sp. BRI 8 isolated from the Antarctic Sea water, Songklanakarin. J Sci Technol 35(6):623–630 Google Scholar
- Joshi D, Kumar S, Suyal DC, Goel R (2017) The Microbiome of the Himalayan ecosystem. In: Kalia V, Shouche Y, Purohit H, Rahi P (eds) Mining of microbial wealth and meta genomics. Springer, Singapore, pp 110–116 Google Scholar
- Junge K, Cameron K, Nunn B (2019) Chapter 12 - Diversity of psychrophilic bacteria in sea and glacier ice environments—insights through genomics, metagenomics, and proteomics approaches. In: Microbial diversity in the genomic era. Academic Press, pp 197–216. https://doi.org/10.1016/B978-0-12-814849-5.00012-5ChapterGoogle Scholar
- Kapse N, Singh P, Roy U, Singh SM, Dhakephalkar PK (2017) Insights into the psychrophilic and sea ice-specific lifestyle of Marinobacter sp. strain AC-23: a genomic approach. Genome Announc 5(15):e00134–e00117 ArticlePubMedPubMed CentralGoogle Scholar
- Kasana RC (2010) Proteases from psychrotrophs: an overview. Crit Rev Microbiol 36(2):134–145. https://doi.org/10.3109/10408410903485525ArticleCASPubMedGoogle Scholar
- Kasana RC, Gulati A (2011) Cellulases from psychrophilic microorganisms: a review. J Basic Microbiol 51(6):572–579. https://doi.org/10.1002/jobm.201000385ArticleCASPubMedGoogle Scholar
- Kishore KH, Begum Z, Pathan AAK, Shivaji S (2010) Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60(8):1909–1913 ArticleCASPubMedGoogle Scholar
- Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426–431. https://doi.org/10.1128/jb.176.2.426-431.1994ArticleCASPubMedPubMed CentralGoogle Scholar
- Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res 49:2163–2181. https://doi.org/10.1016/S0967-0637(02)00122-XArticleCASGoogle Scholar
- Kruse W (1910) Allegemeine Mikrobiologie. FCW Vogel Google Scholar
- Kumar S (2018) Documentation of the bacterial and diazotrophic diversity from Garhwal Himalaya through culturable and unculturable approaches. G.B.P.U.A.&T, Pantnagar Google Scholar
- Kumar S, Suyal DC, Bhoriyal M, Goel R (2018) Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J Plant Nutr 41(8):1035–1046. https://doi.org/10.1080/01904167.2018.1433211ArticleCASGoogle Scholar
- Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2019) Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 14(3):e0213844 ArticleCASPubMedPubMed CentralGoogle Scholar
- Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2020) Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress. J Cell Stress Chaper 25(6):1025–1032. https://doi.org/10.1007/s12192-020-01139-4ArticleCASGoogle Scholar
- Lin X, Yang B, Shen J, Du N (2009) Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Curr Microbiol 59:341–345. https://doi.org/10.1007/s00284-009-9440-9ArticleCASPubMedGoogle Scholar
- Maiangwa J, Ali M, Salleh A, Abd RR, Shariff F, Leow T (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19:235–247. https://doi.org/10.1007/s00792-014-0710-5ArticleCASPubMedGoogle Scholar
- Mancuso NCA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271. https://doi.org/10.1007/s10126-004-5118-2ArticleCASGoogle Scholar
- Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. https://doi.org/10.1007/s002530100701ArticleCASPubMedGoogle Scholar
- Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S, Chakrabarti T (2005) Planococcus stackebrandtii sp. nov., isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 55(1):91–94 ArticleCASPubMedGoogle Scholar
- Mehta P, Deshmukh K, Dagar SS, Dhakephalkar PK, Lanjekar VB (2021) Genome sequencing and analysis of a psychrotrophic methanogen Methanosarcina sp. nov. MSH10X1 cultured from methane hydrate deposits of Krishna Godavari Basin of India. Mar Genomics 100864 Google Scholar
- Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 31–50. https://doi.org/10.1007/978-3-540-74335-4_3ChapterGoogle Scholar
- Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167 ArticleCASPubMedPubMed CentralGoogle Scholar
- Morita RY, Moyer CL (2001) Psychrophiles. In: Encyclopedia of biodiversity, 2nd edn, pp 298–303. https://doi.org/10.1016/B978-0-12-384719-5.00176-3ChapterGoogle Scholar
- Moyer CL, Eric R, Richard C, Morita Y (2017) Psychrophiles and psychrotrophs. In: Reference module in life sciences. https://doi.org/10.1016/B978-0-12-809633-8.02282-2ChapterGoogle Scholar
- Muller M (1903) Uber das Wachstum und die Lebenstatigkeit von Bakterien sowie den Ablauf fermentativer Prozesse bei niederen Temperaturen unter spezieller Berutcksichtigung des Fleisches als Nahrungsmittel. Arch Hyg 47:127–193 Google Scholar
- Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5671. https://doi.org/10.1128/JB.186.17.5661-5671.2004ArticleCASPubMedPubMed CentralGoogle Scholar
- Nam E, Ahn J (2011) Antarctic marine bacterium Pseudoalteromonas sp. knouc808 as a source of cold adapted lactose hydrolyzing enzyme. Braz J Microbiol 42:927–936 ArticleCASPubMedPubMed CentralGoogle Scholar
- Pandey A, Jain R, Sharma A, Dhakar K, Kaira GS, Rahi P, Dhyani A, Pandey N, Adhikari P, Shouche YS (2019) 16S rRNA gene sequencing and MALDI-TOF mass spectrometry based comparative assessment and bioprospection of psychrotolerant bacteria isolated from high altitudes under mountain ecosystem. SN Appl Sci 1(3):1–12 ArticleCASGoogle Scholar
- Parvizpour S, Hussin N, Shamsir MS, Razmara J (2021) Psychrophilic enzymes: structural adaptation, pharmaceutical and industrial applications. Appl Microbiol Biotechnol 105(3):899–907. https://doi.org/10.1007/s00253-020-11074-0ArticleCASPubMedGoogle Scholar
- Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136 CASPubMedGoogle Scholar
- Phadtare S (2011) Unwinding activity of cold shock proteins and RNA metabolism. RNA Biol 8:394–397. https://doi.org/10.4161/rna.8.3.14823ArticleCASPubMedPubMed CentralGoogle Scholar
- Polkade AV, Ramana VV, Joshi A, Pardesi L, Shouche YS (2015) Rufibacter immobilis sp. nov. isolated from a high-altitude saline lake. Int J Syst Evol Microbiol 65(Pt5):1592–1597. https://doi.org/10.1099/ijs.0.000144ArticleCASPubMedGoogle Scholar
- Pote S, Chaudhary Y, Upadhayay S, Tale V, Walujkar S, Shouche Y, Bhadekar R (2014) Identification and biotechnological potential of psychrotrophic marine isolates. Eur Asian J Bio Sci 8:51–60 ArticleCASGoogle Scholar
- Pradhan S, Srinivas TNR, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha MS, Yasala AK, Reddy GSN, Shivaji S (2010) Bacterial biodiversity from Roopkund glacier, Himalayan Mountain ranges, India. Extremophiles 14(4):377–395 ArticleCASPubMedGoogle Scholar
- Ramana KV, Singh L, Dhaked RK (2000) Biotechnological application of psychrophiles and their habitat to low-temperature. J Sci Ind Res 59(2):87–101 CASGoogle Scholar
- Ray MK, Kumar GS, Shivaji S (1994) Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: a possible role in temperature adaptation. J Bacteriol 176(14):4243–4249 ArticleCASPubMedPubMed CentralGoogle Scholar
- Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50(4):1553–1561 ArticleCASPubMedGoogle Scholar
- Reddy G, Raghavan P, Sarita N, Prakash J, Nagesh N, Delille D, Shivaji S (2003) Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7(1):55–61 ArticleCASPubMedGoogle Scholar
- Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54(3):713–719 ArticleCASPubMedGoogle Scholar
- Reddy GSN, Prabagaran SR, Shivaji S (2008a) Leifsonia pindariensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas, and emended description of the genus Leifsonia. Int J Syst Evol Microbiol 58(9):2229–2234 ArticleCASPubMedGoogle Scholar
- Reddy GSN, Uttam A, Shivaji S (2008b) Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int J Syst Evol Microbiol 58(10):2330–2335 ArticleCASPubMedGoogle Scholar
- Reddy GSN, Pradhan S, Manorama R, Shivaji S (2010) Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. Int J Syst Evol Microbiol 60(4):866–870 ArticleCASPubMedGoogle Scholar
- Reddy GSN, Manasa BP, Singh SK, Shivaji S (2013) Paenisporosarcina indica sp. nov., a psychrophilic bacterium from a glacier, and reclassification of Sporosarcina antarctica Yu et al., 2008 as Paenisporosarcina antarctica comb. nov. and emended description of the genus Paenisporosarcina. Int J Syst Evol Microbiol 63(Pt_8):2927–2933 ArticleCASPubMedGoogle Scholar
- Reddy GS, Sreenivas A, Shivaji S (2014) Draft genome sequence of Cryobacterium roopkundensis strain RuGl7, isolated from a soil sample in the vicinity of Roopkund Lake, Himalayas, India. Genome Announc 2(6):e01206–e01214 Google Scholar
- Ruberto L, Vazquez S, Lobalbo A, Mac CW (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct Sci 17:47–56. https://doi.org/10.1017/S0954102005002415ArticleGoogle Scholar
- Russell NJ (2008) Psychrophily and resistance to low temperature. In: Extremophiles – vol II, encyclopedia of life support systems (EOLSS), pp 1–34 Google Scholar
- Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol 52:1–13 Google Scholar
- Samie N, Noghabi K, Gharegozloo Z, Zahiri H, Ahmadian G, Sharafi H, Behrozi R, Hojatollah V (2012) Psychrophilic α-amylase from Aeromonas veronii NS07 isolated from farm soils. Process Biochem 47:1381–1387. https://doi.org/10.1016/j.procbio.2012.05.007ArticleCASGoogle Scholar
- Sharma A, Jani K, Feng G-D, Karodi P, Vemuluri VR, Zhu H-H, Shivaji S, Thite V, Kajale S, Rahi P, Shouche Y (2018) Subsaxibacter sediminis sp. nov., isolated from Arctic glacial sediment and emended description of the genus Subsaxibacter. Int J Syst Evol Microbiol 68(5):1678–1682 ArticleCASPubMedGoogle Scholar
- Shivaji S, Prakash J (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95. https://doi.org/10.1007/s00203-009-0539-yArticleCASPubMedGoogle Scholar
- Shivaji S, Rao NS, Saisree L, Sheth V, Reddy GSN, Bhargava PM (1988) Isolation and identification of Micrococcus roseus and Planococcus sp. from schirmacher oasis, Antarctica. J Biosci 13(4):409–414 ArticleGoogle Scholar
- Shivaji S, Ray MK, Rao NS, Saisree L, Jagannadham MV, Kumar GS, Reddy GSN, Bhargava PM (1992) Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Evol Microbiol 42(1):102–106 Google Scholar
- Shivaji S, Chaturvedi P, Reddy GSN, Suresh K (2005a) Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan Mountain ranges of India. Int J Syst Evol Microbiol 55(3):1083–1088 ArticleCASPubMedGoogle Scholar
- Shivaji S, Reddy GSN, Suresh K, Gupta P, Chintalapati S, Schumann P, Stackebrandt E, Matsumoto GI (2005b) Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov., from Antarctica. Int J Syst Evol Microbiol 55(2):757–762 ArticleCASPubMedGoogle Scholar
- Shivaji S, Chaturvedi P, Suresh K, Reddy GSN, Dutt CBS, Wainwright M, Narlikar JV, Bhargava PM (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56(7):1465–1473 ArticleCASPubMedGoogle Scholar
- Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CBS, Datta GN, Manchanda RK, Rao UR, Bhargava PM, Narlikar JV (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59(12):2977–2986 ArticleCASPubMedGoogle Scholar
- Shivaji S, Madhu S, Singh S (2011a) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807 ArticleCASGoogle Scholar
- Shivaji S, Pratibha MS, Sailaja B, Kishore KH, Singh AK, Begum Z, Anarasi U, Prabagaran SR, Reddy GSN, Srinivas TNR (2011b) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan Mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15(1):1–22 ArticleCASPubMedGoogle Scholar
- Shivaji S, Reddy PVV, Rao SSSN, Begum Z, Manasa P, Srinivas TNR (2012) Cyclobacterium qasimii sp. nov., a psychrotolerant bacterium isolated from Arctic marine sediment. Int J Syst Evol Microbiol 62(Pt_9):2133–2139 ArticleCASPubMedGoogle Scholar
- Shivaji S, Ara S, Bandi S, Singh A, Pinnaka AK (2013) Draft genome sequence of Arthrobacter gangotriensis strain Lz1yT, isolated from a penguin rookery soil sample collected in Antarctica, near the Indian Station Dakshin Gangotri. Genome Announc 1(3):e00347–e00313 ArticlePubMedPubMed CentralGoogle Scholar
- Singh P, Singh SM, Dhakephalkar P (2014) Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18(2):229–242 ArticleCASPubMedGoogle Scholar
- Singh P, Kapse N, Arora P, Singh SM, Dhakephalkar PK (2015) Draft genome of Cryobacterium sp. MLB-32, an obligate psychrophile from glacier cryoconite holes of high Arctic. Mar Genomics 21:25–26 ArticlePubMedGoogle Scholar
- Singh P, Kapse N, Roy U, Singh SM, Dhakephalkar PK (2017) Draft genome sequence of permafrost bacterium Nesterenkonia sp. strain PF2B19, revealing a cold adaptation strategy and diverse biotechnological potential. Genome Announc 5(15):e00133–e00117 ArticlePubMedPubMed CentralGoogle Scholar
- Soni R, Suyal DC, Agrawal K, Yadav A, Shouche Y, Goel R (2015) Differential proteomic expression of Himalayan psychrotrophic diazotroph Pseudomonas palleroniana N26 under low temperature diazotrophic conditions. CryoLetters 36(2):74–82 PubMedGoogle Scholar
- Srinivas TNR, Singh SM, Pradhan S, Pratibha MS, Kishore KH, Singh AK, Begum Z, Prabagaran SR, Reddy GSN, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15(6):673–690 ArticleCASPubMedGoogle Scholar
- Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215. https://doi.org/10.1146/annurev.micro.53.1.189ArticleCASPubMedGoogle Scholar
- Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665. https://doi.org/10.3390/ijms130911643ArticleCASPubMedPubMed CentralGoogle Scholar
- Suyal DC, Yadav A, Shouche Y, Goel R (2014) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68(4):543–550 ArticleCASPubMedGoogle Scholar
- Suyal DC, Kumar S, Yadav A, Shouche Y, Goel R (2017) Cold stress and nitrogen deficiency affected protein expression of psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1. Front Microbiol 8:430 ArticlePubMedPubMed CentralGoogle Scholar
- Suyal DC, Joshi D, Kumar S, Soni R, Goel R (2019) Differential protein profiling of soil diazotroph Rhodococcus qingshengii S10107 towards low-temperature and nitrogen deficiency. Sci Rep 9(1):1–9 ArticleCASGoogle Scholar
- Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E (2015) Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci 8:348–357. https://doi.org/10.1080/21553769.2015.1044130ArticleCASGoogle Scholar
- Upadhyay G (2016) Psychrophilic pathogens: potential risk for food borne illness. Res J Recent Sci 5(7):50–52 Google Scholar
- Weber MH, Marahiel MA (2003) Bacterial cold shock responses. Sci Progr 86:9–75. https://doi.org/10.3184/003685003783238707ArticleCASPubMedGoogle Scholar
- Whyte LG, Bourbonniêre L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Biorem J 3:69–79. https://doi.org/10.1080/10889869991219217ArticleCASGoogle Scholar
- Yadav AN, Yadav N, Sachan SG, Saxena AK (2019) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7(04):99–108. https://doi.org/10.7324/JABB.2019.70415ArticleGoogle Scholar
- Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66:239–247. https://doi.org/10.1271/bbb.66.239ArticleCASPubMedGoogle Scholar
- Zhang X, Ma X, Wang N, Yao T (2008) New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions. FEMS Microbiol Ecol 67:21–29. https://doi.org/10.1111/j.1574-6941.2008.00604.xArticleCASPubMedGoogle Scholar
- Zhou Z, Qing J, Jinlai M, Fangming L (2008) Antarctic psychrophile bacteria screening for oil degradation and their degrading characteristics. Mar Sci Bull 10:50–57 Google Scholar
Author information
Authors and Affiliations
- Hydrotech Laboratory, Pune, India Pradnya Pralhad Kanekar & Sagar Pralhad Kanekar
- Pradnya Pralhad Kanekar